Accelerated gradient sliding for structured convex optimization
نویسندگان
چکیده
Our main goal in this paper is to show that one can skip gradient computations for gradient descent type methods applied to certain structured convex programming (CP) problems. To this end, we first present an accelerated gradient sliding (AGS) method for minimizing the summation of two smooth convex functions with different Lipschitz constants. We show that the AGS method can skip the gradient computation for one of these smooth components without slowing down the overall optimal rate of convergence. This result is much sharper than the classic black-box CP complexity results especially when the difference between the two Lipschitz constants associated with these components is large. We then consider an important class of bilinear saddle point problem whose objective function is given by the summation of a smooth component and a nonsmooth one with a bilinear saddle point structure. Using the aforementioned AGS method for smooth composite optimization and Nesterov’s smoothing technique, we show that one only needs O(1/ √ ε) gradient computations for the smooth component while still preserving the optimal O(1/ε) overall iteration complexity for solving these saddle point problems. We demonstrate that even more significant savings on gradient computations can be obtained for strongly convex smooth and bilinear saddle point problems.
منابع مشابه
Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization
We consider the problem of optimizing the sum of a smooth convex function and a non-smooth convex function using proximal-gradient methods, where an error is present in the calculation of the gradient of the smooth term or in the proximity operator with respect to the non-smooth term. We show that both the basic proximal-gradient method and the accelerated proximal-gradient method achieve the s...
متن کاملAn Accelerated Hybrid Proximal Extragradient Method for Convex Optimization and Its Implications to Second-Order Methods
This paper presents an accelerated variant of the hybrid proximal extragradient (HPE) method for convex optimization, referred to as the accelerated HPE (A-HPE) framework. Iterationcomplexity results are established for the A-HPE framework, as well as a special version of it, where a large stepsize condition is imposed. Two specific implementations of the A-HPE framework are described in the co...
متن کاملAn Inexact Accelerated Proximal Gradient Method for Large Scale Linearly Constrained Convex SDP
The accelerated proximal gradient (APG) method, first proposed by Nesterov for minimizing smooth convex functions, later extended by Beck and Teboulle to composite convex objective functions, and studied in a unifying manner by Tseng, has proven to be highly efficient in solving some classes of large scale structured convex optimization (possibly nonsmooth) problems, including nuclear norm mini...
متن کاملConditional Gradient Sliding for Convex Optimization
In this paper, we present a new conditional gradient type method for convex optimization by utilizing a linear optimization (LO) oracle to minimize a series of linear functions over the feasible set. Different from the classic conditional gradient method, the conditional gradient sliding (CGS) algorithm developed herein can skip the computation of gradients from time to time, and as a result, c...
متن کاملBetter Mini-Batch Algorithms via Accelerated Gradient Methods
Mini-batch algorithms have been proposed as a way to speed-up stochastic convex optimization problems. We study how such algorithms can be improved using accelerated gradient methods. We provide a novel analysis, which shows how standard gradient methods may sometimes be insufficient to obtain a significant speed-up and propose a novel accelerated gradient algorithm, which deals with this defic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016